
Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Introduction
Welcome to the Terrain Engine 2D User Manual. Here you'll �nd all the

information you need to begin using the engine!

Table of Contents
What is Terrain Engine 2D?

Where do I begin?

What is Terrain Engine 2D?

Terrain Engine 2D is a fast and full featured Unity 2D block engine. It

allows you to procedurally generate complex and destructable 2D

terrain through a simple terrain generation framework. With this

framework you can generate almost anything you can imagine. There

are a few example projects included in the asset which can get you

started, or continue reading through the documentation for more

information.

Unity 2018.1.0f2 Screenshot Terrain Engine 2D V1.21

Where do I begin?

The user manual is here to help you get started with the engine.

Checkout the Intro tab for information on the contents of the engine and

how to setup your scene. The General tab holds all the important

information you need to start using the engine. The Main Properties tab

holds in depth information on all the features of the engine which will be

useful to you if you wish to gain a better understanding of how

everything works!

You can also have a look at the API for information about all the classes

and functions, or checkout the FAQ if you have any questions.

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Contents
Here is a list and explanation of all the main assets of Terrain Engine 2D.

Note that this does not include any extra �les and example projects included in the asset.

Table of Contents

Graphics

Objects

Prefabs

Scripts

Graphics Contains all the base textures and materials for the engine

Materials Contains all the base materials for the engine

Lighting Contains all the materials for the lighting

BasicLight.mat The material used for any basic light

BlockLighting.mat The material used by the blocklighting system

FastBlur.mat A material used by the Advanced Lighting system for blurring

the light textures

LargeLight.mat The material used for large light sources

LightBlend.mat A material used by the Advanced Lighting system for

blending light textures

Overlay.mat A material used by the Advanced Lighting system for overlaying

textures

SmallLight.mat The material used for small light sources

FluidMesh.mat The material used for the mesh generated by the Fluid Chunks

FluidTextured.mat The material used for the FluidRenderer to render the �uid

texture

GridSelector.mat The material used for the Grid Selector

LightIcon.mat The material used by the Grid Selector to show the lighting icon

Sprite.mat The material used for the Sprites that use Z-ordered layering

Shaders Contains all the shaders for the engine

Lighting Contains all the shaders for the lighting

BlockLighting.shader Shader used for rendering the block lighting

FastBlur.shader Shader used for blurring light textures

LightBlend.shader Shader used for blending light textures

LightSource.shader Shader used on all light sources

LightSpread.compute Compute Shader used to to generate the block

lighting

Fluid.shader Shader used for rendering the �uid texture

Sprite.shader Replacement for the Default Sprite shader with ZWrite enabled

Terrain.shader Shader used for terrain textures

UI-Default.shader Built in Unity shader used by the Overlay material

Sprites Contains all the sprites for the engine

Lighting Contains all the Sprites for the lighting

Large_Light_Radial.png Sprite used for large radial lights

Small_Light_Radial.png Sprite used for small radial lights

Circle_Fill.png UI toggle button �ll

Circle_Outline.png UI toggle button image outline

Circle_Outline_2.png UI color wheel outline image

Color_Wheel.png UI radial color wheel image for the �uid color picker

Grid_Selector.png The image of the Grid Selector

Overlap_Block_Template.png Template used for creating Overlap Blocks

Objects All the generic asset objects used by the engine

FluidDensityInputValidator.asset Object used by the OSD Fluid Density Input to

ensure proper formatting of input values

Prefabs All the Prefabs used in the engine

Lighting Prefabs of light sources

AdvancedRaycastLight.prefab An advanced Raycast light which shoots

raycasts to the edges of the terrain to generate shadows

FlashLight.prefab An advanced dynamic raycast light which rotates to face the

cursor

FloodLight.prefab A light source which �oods the general area with light

RaycastLight.prefab A light source which shoots Raycasts in a circular manor

around the light to generate shadows

Torch.prefab An example block light with a simple texture and particle effects

Single Instance Prefabs of GameObjects which should only contain one instance per

scene

GridSelector.prefab The Grid Selector tool for modifying the generated world

OSD.prefab The On Screen display for modifying the generated world

World.prefab The World which controls all components of the engine

WorldCamera.prefab The main Camera which displays the terrain, lighting

and UI on the screen

Chunk.prefab The prefab used to generate the chunks which render the world

LayerOption.prefab A potential layer option for the OSD

Scripts All the source scripts used in the engine

Editor Custom Editor scripts

ProjectEditor.cs A collection of functions used to help update old projects to the

latest version of TE2D

ProjectStartup.cs Any tasks that must run when the project starts to ensure TE2D

works properly

WorldCustomInspector.cs This script controls the custom inspector for the

World

Extras Custom Editor scripts

CursorFollower.cs This class causes its GameObject to follow the cursor

FaceCursor.cs This class causes a 2D GameObject to rotate to face the cursor

MonoBehaviourSingleton.cs This abstract class is used as a base for all scripts

that should act as Singletons

TexturedMesh.cs Generates a custom texture and renders it to a mesh

Fluid Dynamics The scripts used to simulate the Fluid Dynamics System

Advanced Fluid Dynamics The scripts used by the Advanced Fluid Dynamics

system

AdvancedFluidBlock.cs This class stores the information for blocks of �uid

of the advanced system

AdvancedFluidDynamics.cs This class simulates the advanced �uid

physics

FluidType.cs The type of �uid, used by the Advanced Fluid Dynamics system

Basic Fluid Dynamics The scripts used by the Basic Fluid Dynamics system

BasicFuidBlock.cs This class stores the information for blocks of �uid of the

basic system

BasicFluidDynamics.cs This class simulates the basic �uid physics

FluidBlock.cs This class stores the information of a single block of �uid

FluidChunk.cs This class generates the �uid mesh for a single chunk

FluidDynamics.cs This class simulates the �uid physics

FluidRenderer.cs This class renders the �uid simulation in a texture

Lighting The scripts used for the Lighting

Advanced Lighting The scripts used for the Advanced Lighting system

Block Lighting This class controls the ambient lighting

AmbientLight.cs This class controls the ambient lighting

BlockLighting.cs This class controls the block lighting system

BlockLightSource.cs A source of light for the Block Lighting system

Mesh Lights The scripts used for the mesh light sources

AdvancedRaycastLight.cs The script that controls the

AdvancedRaycastLight light source

FloodLight.cs The script that controls the FloodLight light source

MeshLight.cs The script for a source of light that generates a mesh

RaycastLight.cs The script that controls the RaycastLight light source

AdvancedLightSystem.cs This class controls the advanced 2d lighting

system

LightRenderer.cs Renders the advanced lighting

LightSource.cs The base light source script

LightSystem.cs This class controls the basic world lighting

Physics The scripts used for object physics in the engine

PhysicsObject.cs A custom physics script for objects used with the engine

Serialization The scripts used for �le I/O and serialization of data

AdvancedFluidData.cs Serializable script for saving advanced �uid data

BaseData.cs Base serialization script for any save data

BlockData.cs Serializable script for saving block data

FluidData.cs Serializable script for saving �uid block data

SaveData.cs Script holding any data to be saved to a �le

Serialization.cs Static class for saving and loading data

SerializationHelper.cs Static class of helpful functions for serialization

WorldData.cs ScriptableObject holding all preferential data (world inspector data)

for the world

Terrain The scripts responsible for generating, modifying and controlling the
terrain

BlockGridMesh.cs The class is used to create a 2D mesh made up of blocks

BlockInfo.cs This class stores information of a single block type

BlockLayer.cs This class holds block layer data and information

Chunk.cs The class controls a single chunk

ChunkLoader.cs This class controls loading and unloading of chunks

ColliderGenerator.cs The class generates the colliders for a chunk

FallingBlockSimulation.cs The class controls the Falling Block Simulation

TerrainGenerator.cs This class is meant to be expanded upon, it contains the

framework for generating the terrain

TerrainGeneratorTemplate.cs This is the template for creating a

TerrainGenerator script

World.cs This is the main World class which holds all block layers and other

important information for controlling the terrain

Tools The tool scripts

CameraController.cs This class handles input and controls the camera

ChildCameraController.cs This class maintains the orthographic size of a child

camera with the parent

GridSelectorImageSetter.cs This class changes the image of the Grid Selector

OSDController.cs This class controls the OSD

WorldInputHandler.cs This class handles user input

WorldModi�er.cs This class contains functions for modifying the terrain

UI The scripts used by the user interface

ColorPicker.cs The script used to control the color picker of the OSD

FluidDensityInputValidator.cs The script used to create Fluid Density Input

Validator objects

LinkBox.cs A component attached to the World GameObject showing relevant links

to help users of the engine

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Scene Setup
This page explains how to setup your scene to work with Terrain Engine

2D.

Table of Contents
Starting a new project

Setting up the Menu Example

Recommended Settings

Starting a new project

1. Start by creating a new scene where the terrain will be generated, it

is recommended to start with a new scene in order to avoid any

issues you may encounter with other assets or settings.

2. Import the Terrain Engine 2D Asset Package into the project.

3. Ensure that TextMesh Pro is installed by opening up the

PackageManager found under Window in the top menu bar (if you

see TextMesh Pro in the list of 'In Project' items, then it is installed).

4. Import the TextMesh Pro essentials by selecting: Window ->

TestMeshPro -> Import TMP Essential Resources from the top

menu bar.

5. Add these three layers to your Unity project: Terrain, Lighting,

Ignore Lighting (watch this video if you don't know how to do this).

To clarify these are Unity project layers, not Terrain Engine 2D block

layers.

6. Clear the hierarchy of all GameObjects.

7. Add in all the TE2D GameObjects by selecting: GameObject ->

Terrain Engine 2D -> Create All from the top menu bar.

8. Generate a new World Data object by clicking the 'Generate New

World Data' button found in the World inspector.

9. Setup your block data (Refer to Block Setup)

10. Create a new Terrain Generator script (Refer to Terrain Generation)

11. Setup your preferences in the World Custom Inspector (Refer to

Main Properties)

12. That's it! Try hitting 'Play' and test out your new world!

Setting up the Menu Example

Note that the Menu Example can be used to load any world scene, the

SideScrollerExample scene is used here as an example, but you could

also use the TopDownExample, OriginalExample, or any other scene with

the TE2D objects, just be sure to set the correct World Data Object in

the inspector of the GameManager GameObject.

WARNING all �les are saved in the same place, careful not to load a

saved World with the wrong scene (and wrong World Data Object).

1. Load the Menu Example scene

2. Open up the Build Settings (File -> Build Settings or Ctrl + Shift + B)

3. Press the Add Open Scenes button

4. Repeat steps 1-3 for the SideScrollerExample scene

5. With the Build Settings still open ensure that the MenuExample

scene is in the top position (index 0) and the SideScrollerExample is

just below it (index 1). You can reposition them by clicking and

dragging.

6. Then you can close out of the Build Settings and reload the Menu

Example scene.

7. As a last check, select the GameManager GameObject from the

Hierarchy and ensure the SideScrollerWorldData object is added to

the World Data �eld of the GameManager's inspector.

8. Now you're all set, the Menu Example is ready to go! Hit play and test

it out.

Recommended Settings

Global Lighting Window Window - Lighting - Settings (Unity 2018)

Open the Global Lighting Window (Window -> Lighting -> Settings). In

the Scene tab under Environment Lighting set the Ambient Color to

White (#FFFFFF). All other lighting settings should be disabled.

Quality Settings Edit - Project Settings - Quality (Unity 2018)

Rendering Anisotropic Textures: Disabled

Rendering Anti Aliasing: Disabled

Texture Settings
Texture Type: Sprite

Generate Mip Maps: Disabled

Wrap Mode: Clamp

Filter Mode: Point

Compression: None

Materials

For any tileset materials used for the Block Layers the recommended

shader is the included shader labeled 'Terrain' found under:

'TerrainEngine2D/Terrain'.

For any Sprites that you wish to place inbetween terrain layers you must

use the included shader labeled 'Sprite' found under:

'TerrainEngine2D/Sprite'. There is also an included Sprite material for

this purpose.

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Textures
This page explains how to setup your art textures and tilemaps for use in

the engine.

Table of Contents
The Basics

Creating the Artwork

Textures in Unity

Materials

The Basics

Terrain Engine 2D uses tilesets in order to render the beautiful terrain

you see in the examples. In general these tilesets are very easy to setup,

although there are a few rules you must follow in order to get everything

working properly.

The terrain is made up of layers and each layer has its own set of block

types. The layers determine the order in which blocks are rendered.

Generally you will have a background layer, a main layer, and a

foreground layer.

Each layer has its own tileset containing textures for all of the blocks

which that layer contains. These are stored as Materials in Unity.

The very �rst thing you will want to �gure out when planning your game

is how many layers you will have, and what kind of blocks you will want

in each layer. Although don't worry too much about getting down every

single block and layer right at the start, as it is easy to make changes and

add more blocks in later on.

Creating the Artwork

Once you have decided on your layers and have some ideas of the blocks

you want to create, you can get started on creating your �rst tileset.

The tilesets used for Terrain Engine 2D are pretty straight forward, and

there are plenty of examples included with the engine to help you out.

Now before you start creating tilesets and artwork to use with the block

engine, you �rst need to decide what your Pixels Per Block ratio is going

to be. This is the side length of a single tile in pixels. We recommend you

stick with powers of 2 (8, 16, 32, etc). Generally the higher ratio you use,

the more detailed your blocks are going to have to be. In the included

example we went with a Pixels Per Block ratio of 8.

Once you know what your Pixels Per Block ratio is, you can begin by

creating your �rst block.

Block Types

In Terrain Engine 2D we currently support three types of blocks. The

Default block which is just a simple single block tile, this is used for any

blocks which only take up one tile and don't require any kind of special

blending. The Multi Tile block is similar to the Default block, except it

takes up multiple tiles per block, this kind of block will likely be used for

decoration and large objects. Lastly we have what we call the Overlap

Block, this block is special in that it uses Bitmasking to render

transitions and blend with the surrounding blocks. This block will likely

be used for your terrain.

Terrain Engine 2D Tile Types

Overlap Block

Overlap Block's are unique in that certain portions of the texture are

rendered depending on the surrounding blocks. They will overlap into

other tiles to allow for nice transitions (or blending) between different

block types.

Terrain Engine 2D Overlap Block Example

Overlap Blocks are 3 tiles in height and 2 tiles in width. Each Overlap

Block is made up of two sections; the Main section which holds the main

tile graphic, and the Secondary section which holds the Corner Blend

Squares. The Middle Square of the Main section is always rendered. The

Edge Rectangles are only rendered if there is no adjacent block of the

same type at that edge. The Corner Blend Squares are rendered on top

of the Edge Rectangles if there is an adjacent corner block. The Corner

Blend Squares are mapped to the proper position as show by the color

in the image below.

Terrain Engine 2D Overlap Block Info

The purple pixels represent the inside of the block and the black pixels

act as a border to the outside. The Middle Square is the main texture of

the block, it should not contain any border within it as it will be tiled. The

surrounding area around the Middle Square acts as border tiles which

are rendered if the block is on an edge. The colored squares represent

the area that the corner pieces will align with. The corner pieces replace

the border in that position in order to connect corner blocks (as shown in

Figure 3).

Below is an included template to help you to create Overlap Blocks. The

Blend Square Map shows how the Corner Blend Squares will be placed

relative to the tile. The Render Area shows the different parts of the

block which may be rendered to the Mesh. The Basic Template is what

you should use as a guide to creating your own Overlap Blocks. The

Example is a variation of Hard Dirt taken from Tiles_Main (the tileset for

the Main layer).

Terrain Engine 2D Overlap Block Template

Variations

Each block can have as many variations as you would like. This allows

you to further randomize your terrain and prevents any patterns from

forming. We recommend you have at least 3 variations for any block used

for terrain. To add a variation to your block simply create a variant of

your block artwork in the adjacent right tile.

Terrain Engine 2D Variations Example

Textures in Unity

When adding your textures in Unity you should use the Recommended

Settings for Textures found in Setup.

The recommended property settings for your tileset textures are shown

below. Just be sure that your Pixels Per Unit is the same as your chosen

Pixels Per Block ratio. These settings will give you a nice sharp pixel art

style.

Terrain Engine 2D Texture Properties

Materials

Once you have all of your tileset textures created and added to Unity, the

next step is to setup your layer Materials. Every tileset texture will need

to be added to a new Material which will later be linked with its layer

during Block Setup.

Shader

You have the option to use whatever shader you wish for your tileset

textures, although there are a few properties your shader must include

or you risk breaking parts of the engine.

All shaders used for tilesets must have a 2D property for the texture and

have ZWrite On otherwise the Z-Ordered Rendering will not work

properly. Any tilesets using Overlap Blocks also need to use a

Transparent Cutout shader. The recommended shader for tilesets is

the: TerrainEngine2D/Terrain shader.

Material Setup
1. Start by creating a new Material in the Project Window of Unity.

2. Select your desired shader.

3. Add your tileset texture to the Material's Texture parameter.

4. Setup the shaders parameters.

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Block Setup
This page explains how to setup your layer and block types in the World

custom inspector.

Table of Contents
Basics

Block Properties

Layers

Blocks

Basics

In Terrain Engine 2D the terrain is made up completely of blocks. As the

developer you have complete control over all of the blocks in your game.

In order to make everything simple and easy Terrain Engine 2D contains

a convinent tab in the custom inspector of the World called 'Block Setup'.

Inside the Block Setup tab you can setup all of the blocks which will be

used in your game. Here you can add, remove, modify, and rearrange all

of the layers and blocks in your game.

Block Properties

Pixels Per Block

The Pixels Per Block property is the amount of pixels that make up a

single side length of one tile in your block textures. This property should

be set to your desired Pixels Per Block ratio which you would have

needed to determine to create your textures.

Z Block Distance

The Z Block Distance is the z distance between each Block Type when

they are rendered to the scene, it is used to set render order for your

blocks.

Z Layer Factor

The Z Layer Factor is the factor which determines the z distance

between each different block layer. This distance is set by multiplying the

Z Layer Factor with the Z Block Distance.

Layers

In Terrain Engine 2D all of your blocks are arranged in layers, where each

layer has its own set of Block Types. Layers are used to group your

blocks and control render order. Typically you will have a background,

main, and foreground layer. In the custom inspector there is a

Reorderable List which allows you to add, remove, rearange, and modify

the layers.

Layer Properties
Name Give a name to the layer

Enable Colliders Set whether the layer will use colliders

Tileset Material Set the Material for the layer (this Material should contain the

tileset texture)

Adding Layers

To add a new layer to the reorderable list, click the '+' sign at the bottom

right of the list gui.

Terrain Engine 2D Adding Layers

Removing Layers

To remove a layer to the reorderable list, select the layer which you wish

to remove, then click the '-' sign at the bottom right of the list gui.

Terrain Engine 2D Removing Layers

Render Order

The render order of the layers is controlled by the order of the layers in

the list. Layers closer to the top/start of the list will be rendered �rst,

and the other layers rendered on top. You can rearange layers by

dragging them around.

Terrain Engine 2D Rearanging Layers

Blocks

Each layer has its own Reorderable List of blocks where you can de�ne

all of the Block Types for that layer. Similarly to the Layer list you can

add, remove, rearange, and modify all the blocks in the custom inspector.

Only one Reorderable List is shown at time, which you can select using

the Dropdown button in the inspector.

Terrain Engine 2D Block Reorderable List

Block Setup

Whenever you add a new block to the Reorderable Block List you need to

set the Block Properties of that newly de�ne block. The properties are

self explanitory, but it is important to remember that Texture properties

represent only the portion of the texture which represents that block.

These properties are also all in Block Units, meaning you set the Texture

Width, Texture Height, and Texture Position by the number of tiles (for

example: a Default Block would have a Texture Width of 1 and a Texture

Height of 1). Refer to the Example Scene included in the Asset Package if

you have any confusion on setting up the blocks in your scene.

Block Properties
Name Give a name to the block

Overlap Block Set whether this is an Overlap block

Transparent Set whether this block's texture contains any transparent pixels

Variations Set the number of texture variations for this block

Texture Width Set the width of this block (in block units)

Texture Height Set the height of this block (in block units)

Texture X Position Set the x position of this block in the texture (in block units)

Texture Y Position Set the y position of this block in the texture (in block units)

Falling Block This property only shows up if the Falling Block Simulation is enabled

and you are working with the Falling Block Layer. It allows you to set whether the block

will fall with gravity

Render Order

Each Block Type has its own unique render order (or z position), this is

only important for Overlap Blocks which may overlap other blocks. The

render order of the blocks is controlled by the order of the blocks in the

list. Blocks close to the top/start of the list will be rendered �rst, and the

other blocks on top.

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D -
V1.20

INTRO

GENERAL

MAIN PROPERTIES

Main Properties
This page explains all of the Main Properties in the World custom

inspector.

Table of Contents
General

World Data Object

Terrain

Chunks

Modi�cation

Fluid

Lighting

Falling Blocks

Optimization

General

The Main Properties tab of the World custom inspector acts as the hub

for controlling the engine. It holds all of the most important properties

which you need to have access to in order to setup your terrain and any

other features you wish to utilize in your game.

Terrain Engine 2D World Inspector

World Data Object

Terrain Engine 2D Inspector World Data Object

Before you can begin setting up your world you must generate a new

World Data Object. This object will serialize all of the �elds found in the

World Inspector. In other words it will store all of your settings, which

controls everything from how the terrain is generated, to how quickly

�uid can �ow. This acts as a convenient object to access through scripts

for modifying settings at runtime or getting information. It also allows

you to transfer world data between projects, and helps keep data safe

when updating the asset.

Note: You can click on any of the property titles below for more detailed

information.

Terrain <-- Click here

Terrain Engine 2D Terrain Properties

Terrain Generator Script The custom script used for procedurally generating the

world

Auto Save Saves the generated terrain to �le in playmode

Load World Loads terrain from �le in playmode

Name The name of your world (used as the save �le name)

Width The total width of the world (in block units)

Height The total height of the world (in block units)

Seed A integer value used to procedurally generate the world

Random Seed Randomly generate a seed

Generate World Generates the terrain in the editor and saves it to �le

Terrain Engine 2D Load Terrain Properties

Select World Directory Opens a pop-up menu for selecting the directory of the

world for loading

Chunks

Terrain Engine 2D Chunk Properties

Chunk Size The side length of a chunk (in block units)

Load Transform The Transform of the GameO ject where chunks will be loaded

Load Rate The rate at which chunks are checked and loaded into the scene

Load Distance The horizontal distance from the object which chunks will load in

Modi�cation

Terrain Engine 2D Modi�cation Properties

Toggle OSD Toggle for enabling/disabling the On Screen Display (OSD)

OSD Update Rate The rate at which the OSD updates its values (in seconds)

OSD Scale The scale factor use to resize the UI of the OSD

Enable Input Handler Enable or disable the Input Handler in favour of using your

own custom input controller

Max Modify Radius The max size of the Modify Radius

Toggle Cursor Show or hide the mouse cursor in game

Fluid

Terrain Engine 2D Fluid Properties

Disable Fluid Disables the �uid simulation, �uid rendering, and prevents placement of

�uid

Select Fluid Layer Choose the block layer to use for the �uid simulation

Render Fluid as Texture Select this if you want to render the �uid as a single

texture using the Fluid shader (smooths out the edges and gets rid of the blockly look, but

may also be slower)

Basic Fluid Select this if you wish to use the faster but simpler basic �uid simulation

Simulation
Top Down Fluid simulation used in a top-down style 2d game (�uid �ows equally in all

directions)

Run Simulation Toggle the �uid simulation

Fluid Update Rate The rate at which the �uid simulation updates (in seconds)

Physics Properties
Max Weight The maximum amount of liquid a single block can hold (unpressurized)

Min Weight The minimum amount of liquid a single block can hold

Stable Amount If the amount of �uid �owing out of a block is less than the stable

amount, the �uid block is stable

Pressure Weight Fluid weight pressure factor (each �uid block can hold

pressureWeight more liquid than the block above it)

Modi�cation
Fluid Drop Amount Amount of �uid added on drop

Terrain Engine 2D Basic Fluid Properties

Main Color The main color used for the �uid (used for blocks containing high amounts

of �uid)

Secondary Color The secondary color used for the �uid (used for blocks containing

low amounts of �uid)

Terrain Engine 2D Advanced Fluid Properties

Surface Filling This feature allows �uid of a different density to �ll the surface of

another �uid to satisfy the remainder of the current block height (Warning: This is an

experimental feature as it can cause weird behavior)

Fluid Mixing Factor The interpolation factor used to determine how the color is

shared between two mixing �uids (larger values favor the color of the added �uid)

Fluid Types A reorderable list allowing you to setup multiple �uid types.

Lighting

Terrain Engine 2D Basic Lighting Properties

Disable Lighting Disables the light system and prevents light updating

Basic Lighting Select this if you wish to use the faster but simpler basic lighting

system

Light Layer Choose the block layer to use for generating the shadow mask

Amount of light bleed The number of blocks from the edge of the terrain which will

be visible

Terrain Engine 2D Advanced Lighting Properties

Block Lighting
Light Layer Choose the block layer to use with the block lighting system

Intensity Factor The global intensity of the light, used to determine how far the light

can propagate from a light source

Transmission Factor The global transmission factor, used to determine how much

light is lost when transmitting through a block

Ambient Light
Disable Disables the ambient lighting

Ambient Light Layer Choose the block layer to use for ambient lighting

Intensity Factor The global intensity of ambient lights, used to determine how far

the light can propagate from a ambient light source

Transmission Factor The global transmission factor for ambient lights, used to

determine how much light is lost when transmitting through a block

Use Height Map Whether to use a height map to generate the ambient lighting (only

blocks above the surface of the terrain will be illuminated to mimic sunlight)

Day Cycle
Pause Time Pause the day/night cycle and movement of time

Time Factor The factor used to determine how fast time will go by in game (a factor

of 1 is realtime)

Time of Day The current time of day, used to control the ambient light color

Day Color The color of the ambient lighting during the day (time between one hour

after sunrise and sunset)

Night Color The color of the ambient lighting during the night (time between one

hour after sunset and sunrise)

Time of Sunrise The time at which the ambient lighting will begin to switch to the

Day Color

Time of Sunset The time at which the ambient lighting will begin to switch to the

Night Color

Post Processing
Down Scale The amount to scale down the lighting texture (in powers of 2), creates a

blurring effect

Number Blur Passes The number of times the lighting texture will be blurred before

it is rendered to screen

Falling Block Simulation

Terrain Engine 2D Falling Blocks Properties

Disable falling blocks Disable the falling block simulation, no blocks will fall with

gravity

Falling Block Layer This is the layer which can contain falling blocks

Update Rate The rate at which the Falling Block Simulation will run (higher rate means

slower update time)

Optimization

Terrain Engine 2D Optimization Properties

Overlap Blend Squares Allows the option to overlap the 'blend squares' (used when

generating Overlap Blocks) over the block's edges. By default the blend squares replace

the block edge, but this adds a lot more vertices and triangles to the generated mesh

Occlusion Culling If this option is selected blocks that are hidden behind other

layers will not be rendered

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

World Camera
This page explains all about how the World Camera works.

Table of Contents
General

Controls

Camera Properties

Preferences

Movement

Zooming

Follow Camera

Pixel Perfect Properties

General

The World Camera is used to render the world and all of its wonderful

features. It is made up of 3 seperate cameras all controlled by the Light

Renderer. If basic lighting is enabled, then the world only uses 1 camera.

However if Advanced Lighting is enabled, then all three cameras are used

in order to render the advanced 2d lighting. The Main Camera is used to

capture anything that is not in the Lighting, Ignore Lighting, or UI Unity

Layers, such as the Terrain. The Light Camera captures any light

sources such as any mesh lights, block lighting, or ambient light. The

Overlay Camera will capture anything in the UI and Ignore Lighting

layer. The three camera's are combined so that the lighting will render on

top of the main graphics, and the overlay will render on top of that. In

this way you can have certain sprites and graphics which will not be

effected by lighting.

There is also a powerful camera controller which will allow you to

smoothly manouver around the world through a variety of inputs.

Controls

Input Camera Controls

Arrow Keys/WASD Camera vertical and horizontal movement

Right click and drag Pan the world

Scroll Zoom in and out

Hold Shift Move/Zoom at double speed

Camera Properties

The Camera Properties are all of the main attributes of the

CameraController script which are used to control the Camera.

Terrain Engine 2D Camera Properties

Preferences

Preferences are settings which allow you to control how the main

camera is modi�ed.

Auto Set Culling Mask Whether you wish the camera to automically setup its culling

mask (this is on by default). The culling mask will differ depending on whether advanced

lighting is being used.

Movement

Movement properties are properties which affect the panning and

zooming of the Camera.

Movement Speed The speed at which the camera will move to a new position

Movement Sensitivity The amount the camera will move each frame

Pan Rate The rate at which the camera will move towards new position (value between

0 and 1). Used for Lerp/Interpolation

Zooming

These properties allow the user to control how the camera will zoom.

Zoom To Cursor Whether the camera will zoom towards the cursor or the center of

the camera

Zoom Speed The speed at which the camera will zoom in and out

Zoom Sensitivity The amount the camera will zoom in and out each frame

Max Zoom The maximum size the camera can zoom to

Min Zoom The minimum size the camera can zoom to

Follow Camera

These properties allow the user to specify an object which the camera

will follow.

Follow Type The type of following the camera is doing; None - No following,

Permanent - All movement controls are disabled, Focus - Will follow the object until a

movement control is used

Object to Follow The Transform of the object which the camera will follow

Object Camera Offset An offset which will be applied to the center of the camera

from the object the camera is following

Pixel Perfect Properties

The Pixel Perfect Properties are properties which help to maintain pixel

perfect graphics through modifying camera size and positioning.

Pixel Perfect Camera Set the Camera to a �xed size to maintain perfect pixel to

screen ratio

Pixel Perfect Movement Rounds the Camera position to the nearest pixel

Camera Size Scale Scale for the Camera when Pixel Perfect Camera is toggled on

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Terrain Generation
This page explains how terrain is generated in the engine as well as

including some in depth information on how to create a custom

TerrainGenerator script for procedurally generating the world.

Table of Contents
General

The Framework

Creating a custom TerrainGenerator script

General

Behind the scenes the terrain is simply an array of data where each

element represents a block, and each block has a number of different

properties that de�ne how it will be rendered and interacted with in the

world. This data is arranged in seperate block layers. Each layer stores

an array of Block Types, Bitmasks, Variations, and Render Blocks. These

arrays index and store the information for every single grid unit/tile

position of the world. All of this data is handled by the block engine, there

are various levels of abstraction making it easy for the developer to make

changes to the Terrain Data without worrying about all the extra

complexity.

Block Type The type of block as de�ned in the world custom inspector

Bitmask The bitmask of the block for rendering

Variation The variation of the block texture

Render Blocks Whether this block should be rendered

In Terrain Engine 2D, the Terrain can be generated in the inspector, or at

runtime. It can be dynamically modi�ed in game using the included tools,

or through any custom scripts which you may create. The terrain is

generated using a custom TerrainGenerator script which is very

powerful and allows you to procedurally generate complex terrain with

ease.

Framework

Terrain Engine 2D contains a framework for procedurally generating the

terrain. This framework will handle the generation of the bitmasking

values, block variations, and the render blocks, but it requires a custom

Terrain Generator script to set up the location of the block types, and

any �uid data. You as the developer have full control over how all the

blocks are placed in the terrain. When you create a custom Terrain

Generator script must extend the base TerrainGenerator script which

includes many helper functions so you do not have to access any

variables directly.

TerrainGenerator Script

The TerrainGenerator script is a base Monobehaviour script which is

meant to act as an extension class for creating a custom Terrain

Generator script. This class makes it very easy to setup the block data

for the World. This script can be found in the asset package under:

TerrainEngine2D/Assets/Scripts/Terrain/TerrainGenerator.cs.

Helper Functions
GenerateData This is where all the block data is set

PerlinNoise Gives the perlin noise value at a speci�c coordinate

SetBlock Sets the block type of a speci�ed layer to a speci�c block

DoAddBlock Determines if a block should be placed based on a probability factor

RemoveBlock Removes a block from a speci�ed layer

RemoveAllBlocks Removes blocks from all layers at a speci�c coordinate

IsBlockAt Checks if there is a block at a speci�c coordinate or area

AddFluid Adds �uid to a Fluid Block

RemoveFluid Removes all �uid from a Fluid Block

GeneratePool Generates a pool of �uid

ClearFluid Removes all �uid from blocks below a threshold (�ood�lls the area, stops at

terrain blocks)

Creating a custom Terrain Generator script

Script Setup
1. Start by creating a new c# script or using the

TerrainGeneratorTemplate script as a starting point. If you choose

to use the template some steps are already completed for you.

2. Inherit the TerrainEngine2D namespace by adding: using

TerrainEngine2D; at the top of the script.

3. Extend the TerrainGenerator script in the class declaration: public

class CustomTerrainGenerator :

TerrainEngine2D.TerrainGenerator

4. Override the GenerateData function and call the base function:

public override void GenerateData()

{

 base.GenerateData();

}

5. (Optional but recommended) Add a Layers enum containing the

name of all your layers. For example:

public enum Layers { Background, Trees, Decoration, Main,

Ore, Foreground}

6. (Optional but recommended) Add enums for all your Layers

containing the name of all of its Block Types. For example:

public enum Background { Dirt, Stone, Wood }

7. (Optional but recommended) Add an enum for all your Fluid Types.

For example:

public enum FluidType { Water, Poison, Lava }

8. Now you can start adding to the GenerateData function and begin

generating your block data (next section).

9. When you are �nished with your script, ensure everything is saved,

and then add it as a component to the World GameObject (the

Terrain Generator Script �eld will automatically populate).

Terrain Generator Component

Generating Block Data

As the developer you have full control over generating the block data for

your terrain. This means there is no proper or correct way to code this

section, it is up to you to �gure out your own cool and unique ways of

generating terrain. You can use any kind of noise you wish, algorithms,

libraries, etc. That being said everything you need to know to get started

can be found below and the included TerrainGeneratorExample script

gives you further detail and examples.

Pass

Block data is generated in Passes, inside each Pass is where you can

modify the block data. A Pass is where you loop through all of the blocks

in the world to modify the block data. You can have as many passes as

you wish inside the GenerateData function. A pass looks something like

this:

//Pass

for (int x = 0; x < world.WorldWidth; x++)

{

 for (int y = 0; y < world.WorldHeight; y++)

 {

 //-----Set block data here-----

 //----------

 }

}

Modifying Block Data

Block data modi�cation refers to adding and removing blocks and/or

�uid. Block data is modi�ed inside a Pass which loops through every

block in the World. This means anything you do inside the Pass is applied

to every single block in the World. Generally we do not want to set every

block to the same type, so to avoid this we use conditional statements.

These conditional statements make use of noise functions, random

functions, and other values or functions in order to decide whether to

add or remove a block.

To add or remove blocks there are two helper functions:

SetBlock(int x, int y, byte layer, byte blockType, float

probability = 100f) RemoveBlock(int x, int y, byte layer)

When calling these functions you need to specify which Layer and if you

are adding a block which Block Type is being set. The functions take this

data as a byte referring to the index of the element in the Layers/Block

list of the World custom inspector. It is recommended to use Enums in

your script to keep track of all your Layers and Block Types.

Example - Removing clumps of blocks to create caves

SetBlock(x, y, (byte)Layers.Background, (byte)Background.Dirt);

SetBlock(x, y, (byte)Layers.Main, (byte)Main.Dirt);

if (PerlinNoise(x, y, 10, 10) > 5)

{

 RemoveBlock(x, y, (byte)Layers.Main);

}

Terrain Engine 2D Terrain Caves

Perlin Noise

Perlin Noise is a type of gradient noise generated through the Perlin

Noise algorithm. It is a popular algorithm used in many different

applications, one of those being procedural generation of graphics. Unity

contains a built in function 'Mathf.PerlinNoise' which can be used to get

values of Perlin Noise from a given x and y �oat value. The

TerrainGeneratorExample scripts show how you can use Perlin Noise to

procedurally generate data. There is also a helper function called

PerlinNoise which makes it easier to manipulate and generate Perlin

Noise values.

Perlin Noise can be used and manipulated to create natural pseudo-

random block terrain. Some things Perlin Noise can be used for includes;

calculating terrain height, generating clumps of blocks, and creating

caves.

The PerlinNoise helper function contains a number of parameters for

manipulating the output Perlin Noise value.

Perlin Noise Parameters PerlinNoise(int x, int y, float

frequency, float scale)

x The x coordinate of the block

y The y coordinate of the block

frequency Controls the variability of the output (lower values produce more variable

output)

scale Controls the size of the output (higher value means larger terrain)

Example - Adding clumps of rock

SetBlock(x, y, (byte)Layers.Background, (byte)Background.Dirt);

SetBlock(x, y, (byte)Layers.Main, (byte)Main.Dirt);

if (PerlinNoise(x, y, 9, 12) > 6)

{

 SetBlock(x, y, (byte)Layers.Main, (byte)Main.Rock);

}

Terrain Engine 2D Terrain Rocks

Height Variables

Height Variables are variables used to set the height of the terrain. They

are initialized inside the �rst loop of the Pass, so that for every x value

there is one consistent height value.

//Pass

for (int x = 0; x < world.WorldWidth; x++)

{

 //-----Set Height Variables here-----

 int groundLevel = RandomHeight(x, 10, world.WorldHeight /

2);

 //----------

 for (int y = 0; y < world.WorldHeight; y++)

 {

 if (y <= groundLevel)

 {

 //Any blocks added here will be at or below the

groundLevel

 }

 }

}

In this example 'groundLevel' is the height variable. It has various Perlin

Noise values added to it in order to produce the resulting height value

for the current x coordinate. For simplicity this is handled through the

RandomHeight function. When given the current X coordinate, a scaling

factor, and a base height for the terrain. RandomHeight will produce a

nice combination of variable terrain heights at least as high as the base

height according to the scale. A higher scale will produce a more vast

landscape with larger hills and more variable terrain.

Terrain Engine 2D Height Variable Example

Random

When generating terrain it is often necessary add a level of randomness

to your blocks. In Terrain Engine 2D this can be done a number of ways.

Unity contains the class 'UnityEngine.Random' which can be used for

generating random values. Terrain Engine 2D has two functions which

make use of this Random class: SetBlock and DoAddBlock. SetBlock can

take an optional percent probability to determine whether the block

should be added or not. DoAddBlock takes a percent probability and

returns a boolean value representing the evaluation of the odds. Below

are some examples making use of these functions.

Example - Randomly adding gems

SetBlock(x, y, (byte)Layers.Main, (byte)Main.Rock);

//Add Gems with a probability of 1%

SetBlock(x, y, (byte)Layers.Ore, (byte)Ore.Gems);

Terrain Engine 2D Random Gems Example

Example - Random Table Sets

if(y < 50)

 SetBlock(x, y, (byte)Layers.Main, (byte)Main.Wood);

//Add Table set with 10% probability if the space is free

if (y == 50 && DoAddBlock(10) && !IsBlockAt(x, y,

(byte)Layers.Decoration, 5, 2))

{

 SetBlock(x, y, (byte)Layers.Decoration,

(byte)Decoration.LeftChair);

 SetBlock(x + 1, y, (byte)Layers.Decoration,

(byte)Decoration.Table);

 SetBlock(x + 4, y, (byte)Layers.Decoration,

(byte)Decoration.RightChair);

}

Terrain Engine 2D Random Table Sets Example

Generating Fluid Data

When manipulating �uid data for your terrain you have three main

functions at your disposal: AddFluid, RemoveFluid, and GeneratePool.

If you wish to add/remove �uid from a speci�c block you can use the

AddFluid and RemoveFluid functions. With these functions you can set a

speci�c �uid weight, color and density (if using the advanced �uid

simulation).

Note that calling AddFluid on a block that contains either a solid block or a

�uid of a different density will not work. You will have to remove the �uid in

that block �rst.

Generate Pool is used when you want to generate a pool in an already

open area free of blocks, such as in a cave underground. It works by using

a �ood-�ll algorithm to recursively loop through all connected empty

blocks below a set maximum height. The function adds the maximum

amount of �uid each block can hold while taking pressure into account.

Below is an example of using GeneratePool from the

SideScrollerGeneratorScript. In this example the function is used to

randomly generate pools of one of three different �uid types in caves.

//Add water to caves

if (!IsBlockAt(x, y, world.FluidLayer))

{

 byte density = (byte)FluidType.Water;

 if (DoAddBlock(10))

 density = (byte)FluidType.Poison;

 else if (DoAddBlock(15))

 density = (byte)FluidType.Lava;

 //Generate a pool of water with 0.5% probability

 if (DoAddBlock(0.5f))

 GeneratePool(x, y, fluidDynamics.MaxWeight, density, y,

new Vector2Int(x, y));

}

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Tools
This page explains how to use the tools included with Terrain Engine 2D.

Table of Contents
General

On Screen Display

Grid Selector

General

In Terrain Engine 2D the two tools included with the engine are the On

Screen Display (OSD) and Grid Selector. These tools are there to help

manipulate the world during runtime. They also act as examples for

those who wish to incorporate similar tools in their game. Both tools can

be used independantly of the other, but some features will not work

without the other present in the scene.

On Screen Display (OSD)

The On Screen Display is a graphical user interface (GUI) which provides

the user with valuable information about the world, while providing the

means for modifying the terrain; adding blocks, removing blocks,

manipulating �uid...

Terrain Engine 2D On Screen Display

Basics

The OSD can be enabled and scaled through the World custom inspector.

There is also a property called the OSD Update Rate which controls how

often the Text objects are updated (such as the FPS). The OSD is

connected to the layer and block lists of the World custom inspector,

which means any blocks and layers added to those lists will become

available for use in the OSD. The OSD is an optional tool, meaning terrain

will still be generated and everything will still work without it.

It should be noted that the OSD produces garbage and can slow down

performance.

World Info - Top Bar Overlay

Terrain Engine 2D OSD Top

The Top Overlay contains dynamically updated information about the

terrain and world.

Loaded Chunks The number of Chunks currently loaded in the scene

Total Blocks The total number of blocks in the World

Seed The seed used to generate the terrain

FPS The current FPS (Frames Per Second) of the game

World Tools - Middle Right Overlay

Terrain Engine 2D OSD World Tools

The World Tools contains general settings for modifying the world.

Lighting Toggle Enables/Disables the lighting

Build/Remove Toggle Sets whether blocks are placed or removed on left click

Block Tools - Bottom Right Overlay

Terrain Engine 2D OSD Block Tools

The Block Tools contains options for modifying the terrain blocks. This

window will only appear if the Block Tool is selected in the bottom left.

Here you can set the brush size, and select layers and block types to

place or destroy. You can also set the visibility if you wish to hide certain

layers.

Brush Size Slider Slider for setting the Brush size to control the radius of blocks

modi�ed while building or destroying (Note: only Overlap Blocks can have a Brush Size

greater than 1)

Layer Toggles Toggles for selecting layers for modi�cation. If a layer is selected,

blocks can be added or removed from that layer. (Note: only one layer can be selected at a

time if Build is toggled)

Layer Visibility Toggles Toggles for showing/hiding layers. This modi�es the

transparency of the layers Material

Block Dropdown Dropdown for selecting the Block Type for building (Note: this is

only enabled when Build is toggled)

Fluid Tools - Bottom Right Overlay

Terrain Engine 2D OSD Fluid Tools

The Fluid Tools contains options for modifying the �uid simulation. This

window will only appear if the Fluid Tool is selected in the bottom left.

Fluid can be placed or removed. Whether adding or removing �uid you

can set the brush size. If you are using the Advanced Fluid Simulation and

have building toggled on, you can select a color, opacity, and control the

density of the �uid.

Brush Size Slider Slider for setting the Brush size to control the radius of blocks

modi�ed while building or destroying (Note: only Overlap Blocks can have a Brush Size

greater than 1)

Color Wheel This color wheel can be used to select a color for the �uid to be placed

Opacity Slider This slider can be used to set an opacity for the �uid color. Values are

from [0-255] inclusively, zero being fully transparent and 255 being opaque

Density Input The density input takes in a value inclusively between [0-255] to set the

density of the �uid being placed

Tool Select - Bottom Left Overlay

Terrain Engine 2D OSD Tool Select

The Tool Select overlay allows you to choose between 3 different tools

depending on whether you wish to modify the terrain, the �uid

simulation, or the lighting.

 Block Tools Select Display the Block Tools overlay and be able to modify

the terrain

 Fluid Tools Select Display the Fluid Tools overlay and be able to

add/remove �uid from the world

 Lighting Tools Select This allows you to place/remove light sources from

the scene (Note: this option is only available with the Advanced Lighting System)

Selected Block - Top Left Overlay

Terrain Engine 2D OSD Selected Block

The Selected Block overlay contains dynamically updated information

about the current selected block(s). This overlay shows the coordinate of

the current selected block based on the closest grid position to the

cursor. It also lists the Block Type of every selected layer at that position

(if a block exists).

There is also a 'Save World' button allowing you to save the current

world to �le so that it may be loaded again in the future.

Grid Selector

The Grid Selector is an image which follows the cursor and snaps to the

closest grid coordinate. It allows the user to see the block(s) that are

currently selected or shows an image of the current block to be placed.

Terrain Engine 2D Grid Selector Default Image

Image

Depending on whether the OSD has either Build or Remove toggled-in

the World Tools overlay window-the Grid Selector will show different

images. If Build is toggled the Grid Selector will show the current block

selected in the OSD for placement. If Remove is toggled the Grid Selector

will show its default image. In either case the Grid Selector will resize to

match the current Brush Size. Note: The Grid Selector will be stuck at the

Default image and size if the OSD is not active in the hierarchy.

The Default image can be modi�ed by changing the Grid Selector

Material. You can set the tint or completely change the texture and

material for varying results.

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Serialization
This page explains how data is saved in the engine.

Table of Contents
How data is saved

What data is saved

Where data is saved

Saving Worlds

Loading Worlds

How data is saved

Data is saved in two different forms, the world settings which includes

the Main Properties and Block Setup information is serialized as a

Scriptable Object called World Data. The main Terrain properties (Name,

Width, height, Seed) from the World custom inspector is saved in it's own

seperate json �le reffered to as the Base Data. The terrain data arrays

holding all the data used to serialize the in game world, are saved in a

binary �le reffered to as the Terrain Data.

What data is saved

World Data

The World Data includes all of properties and �elds that can be modi�ed

from the World custom inspector, including the Block Type and Layer

information. The WorldData script is a ScriptableObject which serializes

the data in the inspector. This is useful for many reasons. For one it

allows you to have all the settings stored in one place for easy access

from all your scripts. It can be accessed from any script using:

TerrainEngine2D.World.WorldData;

It makes it easy to export your Terrain Engine 2D projects, as well as

keep your data safe during updates. It also allows you to keep multiple

World Data objects, which could be useful for testing different block

textures for example. Another bonus of doing this is it allows you to save

modi�ed settings during playmode.

Terrain Engine 2D Inspector World Data Object

World Data Objects can be generated from the World Custom Inspector.

Base Data

The Base Data is one of the two types of data which is saved to �le when

your world is saved. It is the most basic information about your world, it

contains the Name, Width, Height and Seed. The kind of information

you might want to show in a menu screen for example.

The Base Data is saved as a .json �le

Terrain Data

The Terrain Data is the other type of data saved to �le when you world is

saved. It contains all of the block and �uid data for every single grid

position in your generated world.

The block data stored to �le includes the BlockType and RenderBlock

information. This is the only data necessary to save as all the other

information can be generated at program start. This does mean that the

terrain variation will not be saved, and any changes to that at runtime

will be lost. If you wish to save more data, it is easy to expand upon the

serialization system. Refer to the BlockData and FluidData scripts, as

they are good examples for how that can be done.

The �uid data stored to �le depends on whether the basic or advanced

�uid simulation is being used. If the basic �uid simulation is being used

then only the �uid Weights are serialized. If the advanced �uid

simulation is used, then the �uid Density and Color data is also

serialized.

The Terrain Data is saved as a .bin �le

Where data is saved

The World Data Object is saved directly to your main project folder, as it

is created within the Unity editor.

There are two seperate places where the Base and Terrain data are saved

depending on if the game is run from the editor or in a build.

In Editor

If the game is run from the editor and the game is saved, then the default

save location is:

public static string EditorSaveLocation =

Application.streamingAssetsPath/Worlds;

'Application.streamingAssetsPath' will create a folder called

StreamingAssets in the root of your main project folder. This allows you

to access all of your saved worlds from one convenient place when

testing, and makes sharing projects easier.

In Build

If the game is run from a build and the game is saved, then the default

save location is:

public static string DefaultSaveLocation =

Application.persistentDataPath/Worlds;

'Application.persistentDataPath' is going to be different for everyone, for

more information you can refer to Unity's documentation.

WARNING be wary that any time you make changes to the settings of

your world, any previously saved worlds may no longer work!

Saving Worlds

In Editor

In the editor your world can be saved manually and automatically. If you

enable Auto Save in the World inspector, then your world will be saved

automatically when you exit playmode. Your world will also be saved if

you manually select Generate World in the World inspector. Your world

can also be manually saved during runtime from the OSD.

From Script

Saving your world from script is super easy, and can be called from

anywhere using:

TerrainEngine2D.Serialization.Save();

Calling that function will create a directory, then serialize the Terrain

Data and Base Data to �le at the appropriate location.

Loading Worlds

In Editor

Note that you can not load saved world �les that were generated and

saved with a different World Data object.

From the editor you can load a world in the World inspector by checking

the Load World option found near the top of the inspector under

Terrain. Then you must locate the directory of the world you wish to

load by hitting the Select World Directory button. Which will open up a

�le explorer window. After a valid world directory has been selected the

Terrain Properties of that world will be listed as shown below.

Terrain Engine 2D Terrain Properties

From Script

The process for loading a world from script is a little more complicated

then saving. An example scene in provided in the asset called

MenuExample, you can refer to that scene or particularly the

GameManager scripts for how this is done.

If you choose to use the MenuExample ensure that you properly setup

the BuildSettings for switching scenes detailed in Setup.

Note that every World Data Object has a GUID which will match the SID

of the BaseData �le in the directory of any world generated and saved

with that World Data Object.

The SID value from a BaseData �le can be attained using

Serialization.GetSID from the path to the save directory.

This can be used to ensure you are not loading world save �les from

other TE2D projects.

The easiest way to load a world from script is to modify the WorldData

properties; LoadWorld and WorldDirectory . You must set LoadWorld

to true and set the WorldDirectory to the path of the world you wish to

load. Then the next time you reload the scene your new world will be

loaded. This can be done from your current scene or any other scene.

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Terrain
In depth information on how terrain works in the engine.

Table of Contents
General

Terrain Data

Terrain Properties

Colliders

General

The terrain at its core is just a bunch of data representing the location of

blocks and how they will be rendered. The terrain data is split up into

layers of different block types, and this data is procedurally generated by

a Terrain Generator script. Rendering of the terrain is done in Chunks so

that only the visible portion of the world is rendered into scene.

Terrain Data

Data is stored in 2-dimensional byte arrays, where each Block Layer has

it's own set of data arrays. There are four main types of data stored in

each Block Layer: BlockType, RenderBlock, Bitmask, and Variation

data. The index of each data element in the 2d byte array represents a

grid coordinate (x, y), where (0, 0) is the bottom left most point of the

terrain.

When the Terrain Generator script runs it �lls the BlockType and

RenderBlock data arrays, the Bitmask and Variation data is generated

after.

While in game, this data is constantly changing as the terrain is modi�ed.

When blocks are added or removed the location of blocktypes and

renderblocks must be updated, bitmasking values must be regenerated

for surrounding blocks, and variations must be generated or cleared.

BlockType

The BlockType represents which type of block is location at that

position. These are the block types that are de�ned in the Block Setup

section of the World inspector. The default value 0 represents 'air' or no

block at that position, other byte values represent the (index + 1) of the

BlockType as setup in the inspector. Where the block at the top of the list

has an index of 0.

If the BlockType takes up more than one grid unit or tile, then every

single grid position that multi-block takes up will recieve the same

BlockType index value.

BlockInfo

Information about what each BlockType value represents can be found

by accessing the BlockInfo of that type. The BlockInfo stores all the

information about the block as setup in the World inspector. This

includes but is not limited to; the name of the block, the texture

dimensions, the number of variations, and transparency.

You can get the BlockInfo by calling the GetBlockInfo function (of the

BlockLayer class) with either the BlockType value or position of the block

which you want further information on.

RenderBlock

The RenderBlock data represents the position of blocks that are to be

rendered. This is important to distinguish as there are some instances in

the BlockType array where a position may be �lled by a block that you do

not want to render. Such is the case of multi-tile blocks, where you only

want to render the block texture from the origin (or bottom left position)

of where that block was placed, not at every single position that

BlockType is located in the BlockType array.

Bitmask

The Bitmask is an important bit of information used to render the

different edges and corners of the block textures. Each bitmask value is a

number which represents the positioning of surrounding blocks. These

bitmask values are 8-bit, where each bit represets a different adjacent

block position. If the bit is on (1) then there is a block in that position, if it

is off (0), then there is no block in that position. Below is an example

calculation of a blocks bitmask:

Block Bitmasking Example

For more information on how bitmasking works, checkout this article by

Angry Fish Studios.

Variation

The Variation data holds index to which texture variation is going to be

used for the block at the indexed position. Where an index of 0

represents the block texture furthest to the left in the tileset, with

increasing index horizontally to the right.

Texture Variation Index Values

Variations are generated randomly at the start of the game and are not

serialized. This means if you make changes to the variation of a block at

runtime, this change will not be saved.

Terrain Properties

Near the top of the World inspector you will �nd the Terrain properties

section. To setup these properties you will begin by adding a Terrain

Generator Script which will be used to generate the terrain for the world.

You can not directly drag and drop the script into the inspector �eld, you

must add it as a component to the World GameObject. The input �eld will

then automatically �ll itself. Unless you are loading a world from �le,

then this must be done or else an error will be thrown in playmode. You

can set whether you want to save the world you generate and/or load a

world from �le. When saving your world all the block data and terrain

properties will be saved to �le in the Streaming Assets folder when

running in editor, or to Application.PersistantDataPath for builds by

default.

Terrain Engine 2D Terrain Properties

Terrain Generator Script The custom script used for procedurally generating the

world

Auto Save Saves the generated terrain to �le in playmode

Load World Loads terrain from �le in playmode

Name The name of your world (used as the save �le name)

Width The total width of the world (in block units)

Height The total height of the world (in block units)

Seed A integer value used to procedurally generate the world

Random Seed Randomly generate a seed

Generate World Generates the terrain in the editor and saves it to �le

If you choose to generate a new world you will want to give your world a

unique name (this is used for saving the world) and set its size. Do not set

the size of the world too large or you will run into memory issues (I

recommend a maximum of 1,000,000 (width x height) blocks total for

running in the editor). The seed of the world is used to generate the

terrain, it can be set to any positive or negative integer value, try playing

around with the values to see how it affects the world you create. Note

that the Generate World button allows you to generate the world and

then load it right from the editor as opposed to generating the �le at

runtime.

Terrain Engine 2D Load Terrain Properties

Select World Directory Opens a pop-up menu for selecting the directory of the

world for loading

Should you choose to load a world from �le, you will need to select a

valid World Directory folder. To ensure that you selected the proper

folder check to see that the right terrain properties are displayed (an

error will tell you if the folder is invalid).

Colliders

You have the option of generating 2d colliders for any of the block layers

you wish. This can be done in the Block Setup section of the World

inspector. Each layer has the option of adding colliders. Adding colliders

to multiple block layers will mean all of the blocks of those layers will be

included in the collider generation.

Colliders are generated on a per chunk basis, meaning each chunk has

it's own collider. Terrain Engine 2D uses Unity's PolygonCollider2D for

chunk colliders.

Terrain Colliders

Colliders are generated using a complex recursive algorithm that

traverses along the edges of the terrain and creates numerous paths for

the PolygonCollider2D to fully encompass the terrain.

Colliders are dynamically updated, which means every time a block is

added or removed from a chunk, the collider must regenerate.

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Chunks
In depth information on how terrain is rendered in the engine.

Table of Contents
General

How Terrain is Rendered

The ChunkLoader

Chunk Properties

General

Typically your world is going to be much larger than the size of your

screen. Since at any time you will only be seeing a portion of the world,

there is no reason for the whole world to be loaded into scene at all

times, this only slows down your game. In order to solve this problem

Terrain Engine 2D renders your world in chunks, so that only the world

within view of the camera is loaded into the scene.

Terrain Engine 2D Chunks Scene

How Terrain is Rendered

Each chunk acts as a puzzle piece which can be put together to make the

visible portion of the terrain. A chunk GameObject is made up of a Mesh,

Chunk script, ColliderGenerator script and PolygonCollider2D. When a

Chunk is instantiated, the Chunk script generates a mesh using the

terrain data from its relative position in the world. Submeshes are used

to generate the different layers of terrain, where each submesh uses the

textured material of the layer it has generated. The terrain blocks of each

layer combine to form each submesh which acts as a grid for which the

block textures are mapped to.

The ColliderGenerator script generates the colliders for the terrain of

that chunk. It does this by creating the PolygonCollider2D paths that

trace along the edges of the terrain of that chunk. This is further

explained in Terrain.

The ChunkLoader

Creation of these chunks is handled by the ChunkLoader. The

ChunkLoader works by loading and unloading chunks based on their

position relative to the LoadTransform. There is a distance threshold

from the center position of the LoadTransform, which when crossed

causes a row/column of chunks to be unloaded from one side of the

terrain and reloaded at the other. The chunks are pooled so that they can

be reused over and over again.

Terrain Engine 2D Chunk Loading

The ChunkLoader also handles updating the chunk graphics which must

occur whenever a change is made to the terrain data. Depending on the

location of the change and the type of change (block added or removed)

one or more chunks will have their meshes regenerated.

There are a few key properties and functions in the ChunkLoader which

might be useful to you when creating your game:

OriginLoadedChunks - This property stores the position of the

bottom left block of the current loaded world

EndPointLoadedChunks - This property stores the position of the

top right block of the current loaded world

LoadChunksAtPosition - This function allows you to specify a

speci�c position to load chunks at. Which can be useful for

teleporting to different parts of the terrain

The ChunkLoader also runs an event whenever chunks are

loaded/unloaded: OnChunksLoaded . This can be very useful, and is used

to keep the lighting and �uid simulation up to date with the currently

loaded terrain information.

More information about the properties and functions of the

ChunkLoader can be found in the API.

Chunk Properties

Terrain Engine 2D Chunk Properties

Chunk Size The side length of a chunk (in block units)

Load Transform The Transform of the GameO ject where chunks will be loaded

Load Rate The rate at which chunks are checked and loaded into the scene

Load Distance The horizontal distance from the object which chunks will load in

The World inspector has a section where you can control some of the

Chunks properties. The �rst property is the Chunk Size, which

represents the side length of a single square chunk. A smaller chunk size

means that your game will need more chunks to render a portion of your

terrain compared to a larger chunk size, and chunks will need to be

loaded more often, but the chunks will load in faster. A larger chunk size

means chunks won't need to be loaded/unloaded as often, but it will take

longer to load/unload chunks. Keep this in mind when choosing your

chunk size (we recommend 16 by default). This needs to be an even

number (generally a factor of 2) and has to be a factor of the width and

height (if it is not the engine will round it for you).

The Load Transform is the GameObject whos position will be used to

load chunks. It needs to be set, or else it will default to the Main Camera.

The Load Rate will determine how often the game will load chunks in

seconds.

The Load Distance will determine how many chunks the game will load

horizontally away from the Load Transform. It should be a multiple of the

ChunkSize. This value is also used to calculate the vertical load distance,

which will be proportionally equivalent.

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Modi�cation
In depth information on how you can modify the terrain.

Table of Contents
General

Modi�cation Properties

Scripting

General

One of the best parts of the terrain engine is the ability to dynamically

modify the terrain at runtime. You can add, remove, and replace any kind

of block from any layer. There are many functions set in place to help you

modify the terrain from script. As well as examples classes such as the

WorldModi�er and WorldInputHandler which can help get you

started.

Modi�cation Properties

The Modi�cation properties of the World inspector gives you options

for modifying the OSD and changing properties associated with world

interaction. The �rst few �elds are settings for the OSD and are pretty

self explanatory. Below that you have the option to enable or disable the

included Input Handler. You will want to disable the Input Handler if you

have your own input controller. It is recommended you replace the

included input handler with your own as the World Input Handler is

meant for testing with the OSD and Grid Selector. It may not be a good �t

for actual game use. The Max Modify Radius determines how large you

can set the Brush Size in the OSD. You also have the option to toggle off

the mouse cursor in favor of just showing the Grid Selector in play-

mode.

Terrain Engine 2D Modi�cation Properties

Toggle OSD Toggle for enabling/disabling the On Screen Display (OSD) - Accessible at

runtime

OSD Update Rate The rate at which the OSD updates its values (in seconds)

OSD Scale The scale factor use to resize the UI of the OSD

Enable Input Handler Enable or disable the Input Handler in favor of using your

own custom input controller

Max Modify Radius The max size of the Modify Radius

Toggle Cursor Show or hide the cursor in game - Accessible at runtime

Scripting

Below is some information on the World Modi�er and World Input

Handler which are scripts used by the example scenes in combination

with the OSD to allow you to modify the terrain. As well as some

information on what functions and events you can use in your own

scripts for dynamically modifying the world.

World Modi�er

The World Modi�er script is a static class which contains functions that

can be used to safely add and remove �uid from the world. These

functions perform the necessary checks to ensure that any actions

performed are valid (i.e. the location is within the world bounds, there is

a block at the location you called RemoveBlock, or there is no block at

the location you called SetBlock). This way you can call any of the World

Modi�er functions directly from input without any errors. These

functions are listed below:

PlaceFluid Places �uid at a speci�c location in the world

RemoveFluid Removes �uid from a speci�c location

SetBlock Sets the block at a speci�c location of a speci�c layer

RemoveBlock Removes blocks from a speci�ed location in speci�ed layers

For more help on how to use these functions in your scripts, the World

Input Handler is an excellent example.

World Input Handler

The World Input Handler processes mouse input into various actions

according to the settings of the OSD. Once a mouse input is processed

the script calls on the appropriate function from the World Modi�er

script to perform the necessary action set out in the OSD. This script is a

great example for how you may want to process input in your game. It

shows how you can use the World Modi�er and other tools to

dynamically modify your terrain through user input.

Functions

The World Modi�er adds on a layer of abstraction/overhead to the base

functions to provide more functionality and make them easier to use for

direct input. However the base AddBlock and RemoveBlock functions of

the World script can also be utilized to modify your terrain.

AddBlock Adds a block to the speci�ed coordinate

RemoveBlock Removes a block from the speci�ed coordinate

If you wish to have even more control over the terrain you can use the

GetBlockLayer function to get the BlockLayer and from there you can

directly modify all of the terrain data arrays (set block types, variations,

bitmasks...). However you must be careful modifying that data as it can

cause unpredictable behavior and errors if you don't know what you're

doing.

Events

The World also runs a number of events for important state changes or

when certain actions are performed. These events are listed below.

OnWorldGenerated Event called when the world is �nished loading

OnNewDay Event called when a new day starts

OnBlockPlaced Event called when blocks have been placed

OnBlockRemoved Event called when blocks have been removed

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Fluid
In depth information on the �uid simulation in the engine.

Table of Contents
The Fluid Simulation

Basic Versus Advanced

Fluid Properties

Rendering Fluid

References

The Fluid Simulation

The Basics

The �uid in Terrain Engine 2D is simulated using cellular automata. You

can think of the Terrain Engine 2D world as a large grid, and in each grid

space you can either have a block or some amount of �uid.

Terrain Engine 2D Fluid

Fluid Data

Similar to the terrain, each block of the world has information stored

about its �uid properties. This data is stored inside the FluidBlocks

array of the FluidDynamics/AdvancedFluidDynamics class. The main

data stored for each block is listed below:

Weight The amount of �uid in the block

Stable Whether the �uid has settled, meaning no more �uid is �owing into or out of

that block

Color The color of the �uid (only in Advanced)

Density The type of �uid (only in Advanced)

The Physics Algorithm

Fluid is simulated each frame by looping through the array of �uid

blocks. Each �uid block compares the amount of �uid it currently has

with those around it. If that block contains more �uid then those

adjacent to it, a small amount of that �uid is transferred. In this way �uid

is continually moved between adjacent blocks until a state of equilibrium

is reached. This is how the algorithm works in its simplest form, however

there are also other factors and complexities to consider.

Fluid can not �ow into grid spaces that contain blocks, which means

blocks will inhibit the motion of �uid, and force it to �ow in different

paths.

Fluid blocks are allowed to hold more weight then the desired maximum.

This creates �uid pressure and can in�uence the �ow of �uid.

In the engine there are two different �uid physics functions, one for side-

scrolling games called Down Flow where �uid �ows down with gravity

and one for top-down games called Top-down Flow where �uid �ows

equally in all directions.

Fluid Down Flow

Down Flow is the default �uid physics function where �uid will fall with

gravity. This makes calculating the �ow of �uid vertically quite more

complex then in the top-down variation. In Down Flow �uid will continue

to �ow down until it reaches a solid (terrain) block or a space �lled to the

max. As stated before, �uid blocks can hold extra weight in a kind of

pressurized state. This means that a lower �uid block can hold a small

amount more �uid than the block above, so �uid pressure increases with

depth. As a result �uid also has the ability to �ow up with this pressure.

When a block has more then the maximum amount of �uid (plus the

extra amount allowed according to its depth) and can not �ow

horizontally it will be forced to �ow up.

Fluid Top-Down Flow

Top-down Flow is much simpler then Down Flow since �uid can �ow

equally in all directions and thus the complexities of �uid pressure do

not apply. When �uid is placed in a simulation using Top-down Flow the

�uid will simply �ow out in all directions until the �uid amount in

adjacent blocks has equalized. However, �uid pressure can still play a

role, as blocks can still become pressurized and hold more �uid then

their maximum if it is added directly.

Basic Versus Advanced

There are two different �uid options which you can utilize depending on

the kind of game you wish to create, your desired features and the target

platform(s). The Basic �uid simulation and the Advanced �uid

simulation. The Advanced �uid simulation was added to the engine in

version 1.20, and with it came a bunch of new features. The main

difference being the ability to have multiple different kinds of �uids as

opposed to just one in the Basic �uid simulation.

Basic Fluid Simulation

The Basic �uid simulation has a single �uid type whose color is

controlled by a Main and Secondary �uid color. The color of a �uid

block is set by interpolating between those two colors. The greater the

amount of �uid (or weight) the �uid block has, the closer the block will be

to the Main color. In this way you can vary the �uid color depending on

the �uid pressure.

Advanced Fluid Simulation

With the Advanced �uid simulation, you can have up to 256 different

�uid types. Each �uid type has a Default Color and Density , �uid blocks

of the same density are able to mix, where as �uid blocks of different

density will remain separated. When two pools of �uid of the same type,

but different color mix their colors will also mix resulting in a new color

forming.

Below is a table showing the Pros and Cons of the Advanced Fluid

Simulation:

Pros Cons

Multiple �uid types Uses more memory

Fluid color mixing More CPU intensive

Fluid density separation

These features are explained in greater depth in the Fluid Properties

section below.

Fluid Properties

The Fluid properties section of the World Inspector gives you full

control over the �uid simulation.

Terrain Engine 2D Fluid Properties

Base

Disable Fluid Disable the entire �uid simulation, select this if you do not wish to have

�uid in your game.

Fluid Layer The terrain layer the �uid simulation will use to determine which blocks

are solid (blocks �uid can not �ow through)

Render Fluid as Texture Render �uid using a single generated texture of the

loaded terrain as opposed to in chunks

Basic Fluid Opt to use the basic �uid simulation instead of the advanced �uid

simulation

Select Disable Fluid to disable the simulation if you choose not to use

�uid in your game, and this will increase performance. If you choose to

have �uid in your game you must select the Fluid Layer which the

engine will use for the �uid simulation. This is the layer in which the �uid

will interact with the blocks of your terrain. You also have the option if

you wish to Render the Fluid as a Single Texture instead of chunks of

meshes. This makes it easier to apply shaders and perform post

processing on the �uid rendering. So if you wish to animate the �uid in

some way, create waves or change the look, you will likely want this

option selected. The downside is in some cases it may be the slower

option. You then have the option of selecting the Basic Fluid simulation

instead of the advanced. The differences of which are explained above.

Simulation

Top Down Fluid simulation used in a top-down style 2d game

Run Simulation Toggle the �uid simulation (this will freeze any �uid in your game)

Update Rate The rate at which the �uid simulation updates (in seconds)

The properties under the Simulation section allow you to modify how

the simulation will run. You can set the �uid physics algorithm to use the

Top Down function meaning �uid will �ow equally in all directions

ignoring gravity. You can toggle the entire �uid simulation through the

Run Simulation �eld. The �uid Update Rate lets you control how often

the simulation updates, which in turn will control the speed that the �uid

�ows. These properties are all accessible at runtime to help with testing.

Physics Properties

Max Weight The maximum amount of liquid a single block can hold (unpressurized)

Min Weight The minimum amount of liquid a single block can hold

Stable Amount If the amount of �uid �owing out of a block is less than the stable

amount, the �uid block is stable

Pressure Weight Fluid weight pressure factor (each �uid block can hold Pressure

Weight more liquid than the block above it)

The Physics Properties section holds properties allowing you to change

the �uid physics of the simulation. The Max Weight and Min Weight

allow you to adjust the amount of �uid a block is able to hold. Changing

the Max Weight will not effect the extra amount of pressurized �uid a

block can hold. The Min Weight is used to stop �uid �ow and is used as a

threshold to determine when a block has approximately no �uid left (so

the minimum weight should always be above but close to zero). The

Stable Amount represents the threshold for determining �uid

equilibrium. Since �uid is constantly �owing into and out of blocks to

maintain equilibrium, this value is used to determine when the �uid

amount �owing is small enough to stop the simulation from continuously

performing calculations. The Pressure Weight is the amount of extra

�uid a block can hold compared to that block above it. Note that �uid

blocks only become pressurized when there is another block containing

�uid directly above it. These properties are all accessible at runtime for

the sake of testing. However you must be careful as changing these

properties at runtime may cause unexpected results and could

potentially break the simulation.

Modi�cation

Fluid Drop Amount Amount of �uid added on drop

The Modi�cation sections holds a single property pertaining to

modifying the �uid in game. The Fluid Drop Amount allows you to

specify the amount (or Weight) of �uid added when placing �uid through

the OSD or World Modi�er script.

Basic Fluid Properties

Terrain Engine 2D Basic Fluid Properties

Main Color The �uid color used for pressurized �uids

Secondary Color The �uid color used for unpressurized �uids

Under the Basic Fluid Properties section (which will only show up if

Basic Fluid is enabled) you have the option to set the Main Color and

Secondary Color of the �uid. The �uid color is set by interpolating

between these two colors. Higher pressurized �uids will have a color

closer to the Main Color where as �uid blocks with �uid less then the

Max Amount will have a color closer to the Secondary Color.

Advanced Fluid Properties

Terrain Engine 2D Advanced Fluid Properties

Surface Filling (Experimental) Allows �uids of different densities to mix in order

to �ll the top surface level of a �uid

Fluid Mixing FactorThe factor effecting how �uids mix together, a higher factor will

result in a more drastic color change

Fluid TypesA reorderable list of �uid types

The Advanced Fluid Properties section has options for setting up the

Advanced �uid simulation. The Surface Filling option is an experimental

feature which allows you to have �uids of different densities mix in order

to �ll the top surface level of a pool. This is to avoid having one �uid

appear to �oat on top of another because the bottom �uid does not have

its surface block level �lled to the top. This works well with small pools

of �uid, but not so well with large pools. There are some issues with this,

because if the bottom pool is big enough, it may totally consume the

other �uid. Which is why this is an experimental feature.

The Fluid Mixing Factor allows you to control how �uid of different

colors (but the same density) mix their colors together. Fluid colors mix

proportionally to the amounts of �uid in each block. The factor allows

you to shift weighting between the color of the �uid �owing into a block,

and the color of the �uid already in the block. A factor of 1 means �uid

color will be based entirely on proportions. A factor less than 1 will place

higher weighting on the �uid color already in the block. A factor greater

than 1 will place greater weighting on the �uid color �owing into the

block. A smaller Fluid Mixing Factor seems to yield the best looking

results.

The Fluid Type list allows you to setup the different kinds of �uid which

will be used in your game. These �uids can be referenced in your scripts

by using their density value as index to the global FluidType array of the

World Data Object. FluidType objects can be created in the Create menu,

which can be accessed in either the top left of the Project Window or by

right clicking in the Project Window. Select Create -> Terrain Engine 2D

-> Fluid Type. You can set the Name and Default Color of the Fluid

Type, and then add it to the FluidTypes list in the World Inspector.

Terrain Engine 2D Creating a Fluid Type

For information on how to use these Fluid Types in your terrain

generation scripts refer to Terrain Generation. For examples on how to

place these �uids in game refer to the WorldInputHander script.

Rendering Fluid

By default �uid is rendered the same as terrain, in chunks of meshes,

however there is the option of rendering the �uid instead by generating a

single texture. Both options have their pros and cons as described below.

Chunks

Rendering �uid in chunks is fast and ef�cient however since the �uid is

ultimately split up into a number of different mesh pieces it can be hard

to create animations or add cool shader effects to your �uid.

Texture

By rendering the �uid as a single texture it is much easier to manipulate

the graphics of the �uid. You can apply shaders to the mesh and further

manipulate the texture by applying post-processing effects. If you wish

to apply your own shader to the generated �uid texture, the default

material used by the Mesh Renderer is called FluidTextured. Any

processing of the texture is handled in the Fluid Renderer script. The

included TopDownExample project in the asset is an example of how

you can create smooth looking �uid using this method, as seen below.

Fluid Texture Rendering

References

Special thanks to Janis Elsts for creating the algorithm for the �uid

simulation, and Jon Gallant for converting it to C# in Unity. Both of these

projects are licensed under the MIT software license. Links to these

projects are included below:

Note that the �uid simulation algorithm from these projects has been heavily

modi�ed, updated and optimized for use in Terrain Engine 2D.

https://w-shadow.com/blog/2009/09/01/simple-�uid-simulation/

http://www.jgallant.com/2d-liquid-simulator-with-cellular-

automaton-in-unity/

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ EXAMPLE PROJECT

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Lighting
This page explains how the lighting works in Terrain Engine 2D.

Table of Contents
General

Basic Lighting

Advanced Lighting

Light Sources

Block Lighting

Ambient Light

Day Cycle

Post Processing

General

Terrain Engine 2D contains a full featured 2d lighting system with many

options to suit the needs of your unique game. The lighting in Terrain

Engine 2D consists of two different lighting systems; basic and advanced.

The basic lighting system is meant for games that do not require a full

lighting solution. It is more performant than the advanced lighting

system, but lacks many of the advanced features. The advanced lighting

system has ambient lighting, complex light sources, a day/night cycle,

and options for post processing.

Basic Lighting

Terrain Engine 2D Basic Lighting

The basic lighting system in Terrain Engine 2D is highly optimized and

does not use any post processing, making it a good option for those who

do not need a complex lighting system and would like to maximize the

performance of their game.

Basic Lighting Properties

Disable Lighting Disables the light system and prevents light updating

Basic Lighting Select this if you wish to use the faster but simpler basic lighting

system

Light Layer Choose the block layer to use for generating the shadow mask

Amount of light bleed The number of blocks from the edge of the terrain which will

be visible

The lighting system renders a dark texture the size of the current loaded

world/chunks. The pixels of the texture are set based on the terrain

blocks of the selected Light Layer. If there is a terrain block in the

corresponding texture position then the opacity of that pixel is set based

on the Light Bleed value and that block's distance from the edge. The

closer the block is to the edge the more visible it will be. Blocks that are a

distance from the edge that is greater than the Light Bleed value have a

corresponding pixel color that is completely black. If there is no terrain

block in the correspond texture position that pixel remains

clear/transparent. In this fashion a shadow mask is generated which will

hide the inner portions of the terrain.

All light data is stored in memory for fast access which means that using

the basic lighting system will cause your game to use more memory than

if you opt to not use any lighting.

Advanced Lighting

Terrain Engine 2D Advanced Lighting

The advanced lighting system uses a combination of complex mesh

generation and post processing to simulate 2d lighting in Terrain Engine

2D. Each source of light in the system (including the ambient/block

lighting) generates a mesh to represent the area illuminated by the light.

A separate camera is used to render all of these light sources into a

texture using a variety of custom shaders, this texture is then blended

with the texture of the main camera. After that a separate overlay

camera which captures all of the UI and other graphics (that should

render above the lighting) has its texture blended on top of the lighting.

This new texture combining the terrain, lighting and overlay is then

output to the screen.

Layers

There are two special layers that are required to be added to your

project in order to use the advanced lighting system. These layers are

used by the additional cameras to render the lighting and UI.

Lighting The Lighting layer is to be used be all light sources that generate a mesh.

This is used so the Light Camera knows which objects to render. No other objects should

use this layer.

Ignore Lighting The Ignore Lighting layer is to be used by all objects which should

render on top of the lighting graphics, but are not considered UI objects and shouldn't be

using the UI layer.

Light Sources

In the advanced lighting system there are two types of light sources;

Block Lights and Mesh Lights.

A Block Light source is simply a reference point to tell the Block

Lighting system that there is a light source at that position. It is created

to work directly with the Block Lighting system and does not do much on

its own. More information on the Block Lighting system can be found

below.

A Mesh Light in its simplest form is a generated mesh. The generation of

the mesh is controlled by the MeshLight script which has a number of

properties for manipulating how the light will look. Each Light Source

also must have a material which will contain the texture and shader used

to render the light. Both the texture and shader can be modi�ed in order

to produce different light shapes and effects.

Mesh Light Properties

Light Color The color of the light

Light Radius The radius of the light

Smoothing Iterations The number of times the mesh vertices will be smoothed

(leave as zero if not using mesh smoothing)

Dynamic Whether this light source will be dynamically updated. Caution : Dynamic

lights are much more demanding than static lights

Stationary Use this if the light does not move and you want to be able to reference it

by its position in the AdvancedLightSystem

Flicker Rate The rate at which the light will �icker (set to 0 to disable �ickering)

Flicker Rate Vary The amount the �icker rate will vary to produce randomness

Flicker Scaling Radius The amount the light mesh will scale to produce the

�ickering effect

The engine comes with three different types of mesh light sources which

all use different algorithms for generating their meshes:

Flood Light

Terrain Engine 2D FloodLight

The FloodLight is a light source which generates its mesh vertices by

looping through the blocks in the Light Layer in 8 directions (north,

north-east, east, sout-east...) straight out from the center of the light.

Light can propagate through a certain number of blocks as determined

by the BlockLightTransfer value. This results in 8 mesh vertices that

make up the shape of the mesh of this light source. This type of light

source is good to use for lights that should illuminate large areas as well

as terrain blocks of the Light Layer.

Terrain Engine 2D FloodLight Properties

Block Light Transfer The amount of blocks that light can pass through

Raycast Light

Terrain Engine 2D Raycast Light

The Raycast Light is a light source which generates its mesh vertices by

raycasting out from the center of the light. Rays are cast is a clockwise

manor based on the Resolution and Light Angle. If there is a collision with

an obstacle the collision point is used as a mesh vertice, else the vertice

is set to the furthest point the ray will reach as determined by the Light

Radius. This type of light source is good for static lights that should cast

shadows on certain objects.

Terrain Engine 2D Raycast Light Properties

Light Angle The �eld of view angle

Obstacle Mask The obstacle layers that the light rays can collide with

Edge Light Bleed The amount that light can bleed into the edge of terrain

Resolution The amount of light rays per degree

Advanced Raycast Light

Terrain Engine 2D Advanced Raycast Light

The Advanced Raycast Light is a light source similar to the Raycast Light

but is quite a bit more complex. Instead of just Raycasting out from the

center in no particular direction, this light �nds all the nearby terrain

chunks and Raycasts to the points in the PolygonCollider2Ds (the

corners of the terrain). This produces more accurate shadows and is

great for dynamic moving lights that should cast shadows.

Terrain Engine 2D Advanced Raycast Light Properties

Raycast Offset The amount the light rays are offset from terrain points.

Raycast Hit Threshold The threshold of whether the correct point was hit. Light

points below this threshold are ignored.

Block Lighting

The Block Lighting system treats the whole Terrain Engine 2D world as a

large grid where every grid unit (or block) has a speci�c light value

representing its visibility/illumination. In this system light sources can

be placed on the grid which will increase the light value of those blocks

around it. Light propagates away from the source, and loses intensity as

it gets farther and farther away. This means blocks farther from the

source will have a lower light value. Light propagation is also affected by

terrain blocks, some light can transmit through terrain blocks, but doing

so will overall result in a reduction of the distance of the lights reach.

The data representing the position and colour of the light sources is

stored in a 2D array to generate a texture which is then run through a

compute shader to spread the lighting.

Block Lighting Scene/Game Comparison

If you wish to place light sources in the Block Lighting system this can be

done by adding the BlockLightSource script to any GameObject you

wish to use as a light source. When that GameObject is instantiated in

your scene the initial position of that objects instantiation will be used to

generate a light source in the system.

Note that the Block Lighting system only allows static lights, moving or

modifying a BlockLightSource after it has been instantiated will not change

the position or color of the light in the resulting mesh.

The main BlockLighting system can accessed from the

AdvancedLightingSystem script, if you wish to add/remove light sources

from your own scripts.

Block Lighting Properties

Light Layer Choose the block layer to use with the block lighting system

Intensity Factor The global intensity of the light, used to determine how far the light

can propagate from a light source

Transmission Factor The global transmission factor, used to determine how much

light is lost when transmitting through a block

Under the Block Lighting section of the World inspector, you can select

the Light Layer which is the block layer which will be used when

calculating light values. This means the terrain in that layer can

in�uence/block lighting. The Intensity Factor property controls how far

light can propagate away from a light source. The Transmission Factor

value controls how much light intensity will be lost when transmitting

through a terrain block.

Ambient Light

Ambient Lighting

Ambient lighting is a form of Block Lighting used to provide a base layer

of illumination for the world. It works by adding light sources to the

empty blocks of a selected block layer. This will illuminate everything

except the terrain of the selected layer (but while also allowing light to

bleed into the edges of the terrain). There is also the option to use a

Height Map which will only place light sources above the surface height

of the terrain. That way everything below the surface stays dark. This is

to mimic sunlight shining down from the sky into the terrain (because of

this it does not work with top-down style games).

Ambient Lighting Properties

Disable Disables the ambient lighting

Ambient Light Layer Choose the block layer to use for ambient lighting

Intensity Factor The global intensity of ambient lights, used to determine how far

the light can propagate from a ambient light source

Transmission Factor The global transmission factor for ambient lights, used to

determine how much light is lost when transmitting through a block

Use Height Map Whether to use a height map to generate the ambient lighting (only

blocks above the surface of the terrain will be illuminated to mimic sunlight)

The ambient lighting is updated dynamically, which means if blocks are

added or destroyed the ambient lighting texture will be regenerated.

Day and Night Cycle

Day/Night Cycle

The advanced lighting system has a built in day and night cycle. This

cycle is based on a real 24 hour day. The day/night cycle simulates day

and night by controlling the background color of the main camera and

the opacity of the ambient light mesh.

Day and Night Cycle Properties

Pause Time Pause the day/night cycle and movement of time

Time Factor The factor used to determine how fast time will go by in game (a factor

of 1 is realtime)

Time of Day The current time of day, used to control the ambient light color

Day Color The color of the ambient lighting during the day (time between one hour

after sunrise and sunset)

Night Color The color of the ambient lighting during the night (time between one

hour after sunset and sunrise)

Time of Sunrise The time at which the ambient lighting will begin to switch to the

Day Color

Time of Sunset The time at which the ambient lighting will begin to switch to the

Night Color

The World inspector has two color �elds: DayColor and NightColor. The

color of these values is used to set the color of the camera's background.

The alpha of these colors is used to set the opacity of the ambient light

mesh. A lower alpha value will result in a darker scene. Day time is

considered to be between one hour after sunrise and at sunset. Night

time is considered to be between one hour after sunset and at sunrise.

DayColor and NightColor are the color and alpha values used during the

day and night respectively. During the one hour period after sunrise and

sunset the DayColor and NightColor are interpolated between each

other to smooth the transition from day to night and night to day.

Post Processing

The advanced lighting system renders the lighting separately and then

blends it into the main graphics after. In this way, post processing effects

can be applied to the light texture in order to create more smooth and

beautiful looking lighting.

Post Processing Effects

During the post processing the lighting texture is downsized and then

blurred a number a times in order to smooth the hard edges of the

generated lights. You can control how many times the texture is

downsized using Down Scale and blurred using Number Blur Passes in

the World inspector. Downsizing is the fastest and easiest way to blur the

texture, but it does not produce the best result and can give undesirable

effects. Blurring the texture looks nice but can slow down performance

as this is done every single frame. Try and �nd a good combination of

downsizing and blurring the lighting for your game.

Post Processing Properties

Down Scale The amount to scale down the lighting texture (in powers of 2), creates a

blurring effect

Number Blur Passes The number of times the lighting texture will be blurred before

it is rendered to screen

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Falling Blocks
In depth information on the Falling Blocks simulation.

Table of Contents
General

Falling Blocks Properties

General

The Falling Blocks simulation allows you to designate certain types of

blocks to fall with gravity. You can designate any blocks of the Falling

Block Layer as Falling Blocks in the Block Setup tab of the World

inspector. These blocks when placed will move in the negative y direction

until they are stopped by a stationary terrain block. If these blocks fall

into water, the water will be pushed into adjacent blocks.

Terrain Engine 2D Falling Blocks

Note that this feature is meant for side-scrolling type games (with gravity in

the -y direction), and would not work in a top-down style 2d game.

Falling Blocks Properties

In the Falling Blocks section you have options for disabling the falling

block simulation. You can set the layer that can have falling blocks (there

can only be one) and set the update rate controlling how fast the

simulation will update.

Terrain Engine 2D Falling Blocks Properties

Disable falling blocks Disable the falling block simulation, no blocks will fall with

gravity

Falling Block Layer This is the layer which can contain falling blocks

Update Rate The rate at which the Falling Block Simulation will run (higher rate means

slower update time)

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

Terrain
Engine 2D

A 2D Block Engine for Unity

FEATURES DOCUMENTATION API FAQ

Terrain Engine 2D
User Manual - V1.25

INTRO

GENERAL

MAIN PROPERTIES

Optimization
For information on how to optimize the engine and improve the

performance.

Table of Contents
General

Optimization Properties

General

If you ever �nd yourself in the situation where you want to optimize your

game, whether you need your app to run better on older mobile devices,

or for any reason there are a number of ways in which you can make

Terrain Engine 2D run more ef�ciently.

The biggest impact on your performance comes down to the features

you are running from the engine. Every extra feature adds more load to

the CPU, and the three largest culprits are the Lighting, Fluid and Falling

Blocks systems. You can greatly increase your performance by either

opting for the more basic versions of the Lighting and Fluid system or

outright disabling them for a huge increase in performance.

To make things easier below I have listed 20 ways you can increase

performance from greatest to least impact:

1. Disable Falling Blocks Falling Blocks is very CPU intensive as it iterates over a large

array and performs calculations as blocks are falling

2. Disable Lighting Lighting is CPU intensive as it performs many lighting calculations

and takes up memory

3. Disable Fluid Flowing �uid is quite CPU intensive and �uid data takes up memory

4. Decrease your Load Distance A lower Load Distance means less chunks loaded

into scene which means everything runs faster

5. Use the Basic Lighting system This saves memory and is less CPU intensive as

less light calculations are performed and there is no post processing

6. Use the Basic Fluid system This saves memory as less information is stored and is

less CPU intensive due to not having to perform color calculations

7. Don't enable colliders Colliders have to regenerate every time a chunk is modi�ed,

don't use colliders for a bump in performance on chunk loading and terrain modi�cation

8. Lower Lighting Post Processing values Post Processing puts a constant load

on the gpu, lower these values to increase all around performance

9. Decrease Light Spread and Transmission This decreases the amount of

calculations required for determining light values, decreasing this value will increase

performance of terrain modi�cation

10. Use a smaller world Width and Height This will decrease the amount of

memory used by your program

11. Disable the OSD The OSD creates garbage which causes lag spikes, and performs

constant text updates which can slow down the game

12. Increase the OSD Update Rate Decrease the rate at which the OSD updates its

text objects for an overall bump in performance

13. Decrease the Max Modify Radius The more blocks being modi�ed at once, the

more calculations required, so reduce the Max Modifying Radius to prevent slow terrain

modi�cation

14. Don't render �uid as a texture Post processing effects are performed on the

�uid texture which can decrease performance

15. Use Occlusion Culling Using occlusion culling reduce the amount of draw calls

16. Overlap Blend Squares Allowing the overlap of blend squares reduces the amount

of calculations required for generating terrain meshes

17. Increase the Chunk Load Rate value A higher chunk load rate means chunks will

load in slower, reducing how often chunks have to load in is a good way to increase

performance as it is a demanding task

18. Use less Block Layers More Block Layers increases the amount of draw calls

19. Decrease the speed of the Load Transform A faster Load Transform means

chunks have to load/unload more often which is a demanding task

20. Don't use Overlap Blocks Overlap Blocks require more calculations when

generating meshes

Optimization Properties

Terrain Engine 2D Optimization Properties

Overlap Blend Squares Allows the option to overlap the 'blend squares' (used when

generating Overlap Blocks) over the block's edges. By default the blend squares replace

the block edge, but this adds a lot more vertices and triangles to the generated mesh

Occlusion Culling If this option is selected blocks that are hidden behind other

layers will not be rendered

The Optimization section of the World Inspector gives you a few extra

options which you can enable if you wish to speed up your game.

Currently there are two options; the �rst is to enable Occlusion Culling.

This means blocks that are hidden behind others (in a background layer

for example) will not be rendered as long as the frontal blocks are not

transparent.

Occlusion Culling in Block Layers

In the image above the game has Occlusion Culling enabled, and it's

foreground layers hidden. This way you can see how the background

layer only has its visible blocks rendered. This reduces the amount of

draw calls and vertices used to render the terrain mesh.

The second option is to Overlap the Blend Squares which optimizes

the generation of Overlap Blocks. This may be an option for you

depending on your textures. It is suggested that you test out this feature

with your own game (zoom in and look closely at the edges of your

terrain to see how it looks).

Overlap Blend Squares Comparison

In the image above you can see how when Overlap Blend Squares is

enabled the Blend Squares are simply generated over top of the rest of

the mesh, where as when Overlap Blend Squares is disabled the Blend

Squares replace that part of the mesh.

Replacing part of the mesh with the Blend Squares requires more

calculations, it is much faster to simply render them over top the rest of

the mesh.

Copyright © 2020 Beyond Axis. All Rights Reserved.

Contact Privacy Top

Beyond Axis MENU

